Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 10:18

loading...  loading...  loading...  

Bình luận (0)
Shuu
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 23:16

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

Bình luận (0)
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 8:30

a: TXĐ: D=R\{-1}

\(y'=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+1\right)'\left(x+m\right)}{\left(x+1\right)^2}\)

\(=\dfrac{x+1-x-m}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x+1\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\)

=>\(\dfrac{1-m}{\left(x+1\right)^2}< 0\)

=>1-m<0

=>m>1

b: TXĐ: D=R\{m}

\(y=\dfrac{2x-3m}{x-m}\)

=>\(y'=\dfrac{\left(2x-3m\right)'\left(x-m\right)-\left(2x-3m\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{2\left(x-m\right)-\left(2x-3m\right)}{\left(x-m\right)^2}=\dfrac{2x-2m-2x+3m}{\left(x-m\right)^2}\)

\(=\dfrac{m}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m}{\left(x-m\right)^2}>0\)

=>m>0

Bình luận (0)
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 20:47

1: TXĐ: D=R\{3}

\(y=\dfrac{x^2-6x+10}{x-3}\)

=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)

Đặt y'<=0

=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)

=>\(x^2-6x+8< =0\)

=>(x-2)(x-4)<=0

=>2<=x<=4

Vậy: Khoảng đồng biến là [2;3) và (3;4]

Bình luận (0)
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 9:19

a: ĐKXĐ: x<>m

=>TXĐ: D=R\{m}

\(y=\dfrac{mx-2m-3}{x-m}\)

=>\(y'=\dfrac{\left(mx-2m-3\right)'\cdot\left(x-m\right)-\left(mx-2m-3\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-2m-3\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+2m+3}{\left(x-m\right)^2}=\dfrac{-m^2+2m+3}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{-m^2+2m+3}{\left(x-m\right)^2}>0\)

=>\(-m^2+2m+3>0\)

=>\(m^2-2m-3< 0\)

=>(m-3)(m+1)<0

TH1: \(\left\{{}\begin{matrix}m-3>0\\m+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)

=>-1<m<3

b: TXĐ: D=R\{m}

\(y=\dfrac{mx-4}{x-m}\)

=>\(y'=\dfrac{\left(mx-4\right)'\left(x-m\right)-\left(mx-4\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-4\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+4}{\left(x-m\right)^2}=\dfrac{-m^2+4}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(\dfrac{-m^2+4}{\left(x-m\right)^2}>0\)

=>\(-m^2+4>0\)

=>\(-m^2>-4\)

=>\(m^2< 4\)

=>-2<m<2

Bình luận (0)
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 9:08

a: ĐKXĐ: x<>-m

=>TXĐ: D=R\{-m}

\(y=\dfrac{mx-2m+15}{x+m}\)

=>\(y'=\dfrac{\left(mx-2m+15\right)'\left(x+m\right)-\left(mx-2m+15\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{m\left(x+m\right)-mx+2m-15}{\left(x+m\right)^2}\)

\(=\dfrac{m^2+2m-15}{\left(x+m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định là \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{m^2+2m-15}{\left(x+m\right)^2}>0\)

=>\(m^2+2m-15>0\)

=>(m+5)(m-3)>0

TH1: \(\left\{{}\begin{matrix}m+5>0\\m-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m>-5\end{matrix}\right.\)

=>m>3

TH2: \(\left\{{}\begin{matrix}m+5< 0\\m-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -5\\m< 3\end{matrix}\right.\)

=>m<-5

b: TXĐ: D=R\{-m}

\(y=\dfrac{mx+4m}{x+m}\)

=>\(y'=\dfrac{\left(mx+4m\right)'\left(x+m\right)-\left(mx+4m\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{m\left(x+m\right)-mx-4m}{\left(x+m\right)^2}\)

\(=\dfrac{mx+m^2-mx-4m}{\left(x+m\right)^2}=\dfrac{m^2-4m}{\left(x+m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m^2-4m}{\left(x+m\right)^2}>0\)

=>\(m^2-4m>0\)

=>\(m\left(m-4\right)>0\)

TH1: \(\left\{{}\begin{matrix}m>0\\m-4>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\)

=>m>4

TH2: \(\left\{{}\begin{matrix}m< 0\\m-4< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< 0\\m< 4\end{matrix}\right.\)

=>m<0

Bình luận (0)
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 9:00

a: TXĐ: D=R\{3}

\(y=\dfrac{2m-x}{x-3}\)

=>\(y'=\dfrac{\left(2m-x\right)'\left(x-3\right)-\left(2m-x\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

\(=\dfrac{-\left(x-3\right)-2m+x}{\left(x-3\right)^2}\)

\(=\dfrac{3-2m}{\left(x-3\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì y'>0 với mọi x thỏa mãn ĐKXĐ

=>\(\dfrac{3-2m}{\left(x-3\right)^2}>0\)

=>3-2m>0

=>2m<3

=>\(m< \dfrac{3}{2}\)

b: TXĐ: D=R\{-m}

\(y=\dfrac{x+3}{x+m}\)

=>\(y'=\dfrac{\left(x+3\right)'\left(x+m\right)-\left(x+3\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{x+m-x-3}{\left(x+m\right)^2}=\dfrac{m-3}{\left(x+m\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\in TXĐ\)

=>\(\dfrac{m-3}{\left(x+m\right)^2}< 0\)

=>m-3<0

=>m<3

Bình luận (0)
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 14:16

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Bình luận (0)
Lê Minh Đức Huy
14 tháng 11 2018 lúc 20:30

a) Tập xác định: D = R\{m}

Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:

y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2

b) Tập xác định: D = R\{m}

Hàm số nghịch biến trên từng khoảng khi và chỉ khi:

y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0

[m<1m>4[m<1m>4

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3

d) Tập xác định: D = R

Hàm số đồng biến trên R khi và chỉ khi:

y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:39

Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)

Chọn C.

Bình luận (0)